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Pattern-Based Peptide Recognition

Byron E. Collins and Eric V. Anslyn*[a]

Introduction

The human olfactory and gustatory systems use cross-reac-
tive receptor proteins to create differential response pat-
terns that can be recognized as a specific smell or taste.[1]

Recent advances in combinatorial chemistry, as well as che-
mometric analysis, have provided supramolecular chemists
with new opportunities to synthesize and implement systems
that closely mimic these biological entities. These pattern-
based recognition arrays rely not on the selectivity of any
one receptor, but on the composite response of all members
of the array.[2] The data obtained from these arrays is used
to develop a “fingerprint” representative of the entire array
response for an analyte. This type of system offers a signifi-
cant advantage because one array can be used for the analy-
sis of several different analytes or mixtures, while no one re-
ceptor in the array need be absolutely selective for any of
those analytes. This approach is particularly intriguing for
chemists studying biological systems, because it is often pro-

hibitive to design receptors for large biomolecules such as
proteins and enzymes.
With some arrays it is possible to analyze array patterns

using the naked eye. However, as the size of the data set in-
creases, this becomes impossible. In these instances, chemo-
metric analytical methods such as principle component anal-
ysis (PCA) or linear discriminant analysis (LDA) are typi-
cally used to simplify the data set. In the context of this arti-
cle, PCA is used as an unguided method of analysis to sepa-
rate data points. It decomposes data into relevant
eigenvalues and eigenvectors that may or may not display
clustering and separation when plotted graphically. LDA
uses discriminant functions to maximize separation between
analyte classes. In this sense, LDA is a guided method of
separation, because the analyte classes are specified during
the calculations.[3] LDA is often used to test the classifica-
tion ability of an array.
We believe that the combination of differential sensor

arrays with pattern recognition protocols will become part
of the systems biology revolution. System biology is a field
that attempts to correlate genomic, proteomics, and metabo-
lomics with biological function and dysfunction.[4] Typically,
biological research takes a “one at a time” approach, called
a reductionist approach, to studying biochemical interac-
tions, in which each gene, protein, and/or metabolite is ex-
amined independently. In a systems biology approach, the
combination and interrelationship of the analytes is exam-
ined. This is an application that calls for “fingerprinting”
complex mixtures of nucleotides, proteins, and metabolites.
In this Concept Article, we examine the earliest and most
fledgling advances toward the fingerprinting of proteins,
peptides, and amino acids.[5] It is clear that we are witnessing
the beginning of a large and expansive field of chemistry
that requires the creation of differential probe molecules—
an inherently chemical problem.

Micromachined Arrays

Researchers at the University of Texas at Austin have devel-
oped an “electronic tongue” capable of detecting analytes in
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aqueous solution.[6] The device consists of a Si/SiN microma-
chined wafer containing pyramidal wells with small
(100 mm) openings in the bottoms. Solid-phase resin-bound
receptors are positioned in the array, one bead per well, and
the chip is fitted into a flow cell that allows solvent to flow
over the top of the wafer and out the holes in the bottom of
the wells. This is fitted with a stereoscope and a charge cou-
pled device (CCD) for data acquisition. Using this technolo-
gy, our group has synthesized a library of resin-bound recep-
tors for the analysis of proteins in solution. The library scaf-
fold consists of a hexa-substituted benzene core with two
amino acid functionalized arms (1).[7] The “pinwheel” core

allows for pre-organization of the binding site, and the in-
corporated boronic acids give the library preference for
diols, catechols, and a-hydroxy carboxylic acids.[8,9] The two
tripeptide arms are diversified by using split-and-pool
chemistry with 19 amino acids (cysteine excluded) creating a
library consisting of 193 resin bound members, 29 of which
were randomly selected for incorporation into the array.
Our group commonly exploits the use of indicator dis-

placement assays (IDAs) to give a colorimetric read-out for
quantification of binding events.[10] In an indicator displace-
ment assay, a receptor is first introduced to an indicator that
binds in the receptor binding site. Next, introduction of the
analyte displaces the indicator. In this case, however, it was
found that greater sensitivity was achieved by using an indi-
cator-uptake assay. An indicator-uptake experiment consists
of passing an analyte through the array for a known amount
of time at a set concentration followed by introduction of an
indicator. The rate at which the indicator is adsorbed by the
receptors is inversely proportional to the analyte@s affinity
for a particular receptor. The detection limit for this method
(355 mm) was nearly 60 times lower than previous work
using IDAs.[11] This was a necessity for the analysis of pro-
teins at biological concentrations. When a 2D PCA scatter
plot was created, differentiation was observed between pro-
teins and glycoproteins. However, it was possible to identify

three relevant principle axes, and when these were used all
of the analytes were separated (Figure 1).
In PCA, those sensors found to contribute most to the for-

mation of a principal component axis will have high loading
values. Sensors that contribute very little to the formation of

a PC axis will have low loading values. Because the recep-
tors used were chosen at random, none were likely to be ex-
ceptionally selective for any of the proteins analyzed. Five
of the beads in this array with the highest loading values on
the first PC axis, and two with low loading values, were se-
quenced by Edman degradation, and there were no similari-
ties among any of these receptors (Table 1). This exemplifies

the hypothesis that when using PCA analysis, while some ra-
tional design is necessary, variety is also important for suc-
cess.
One of the major complications involved in analysis of

biological samples is the presence of multiple potential ana-
lytes. The design and synthesis of a receptor selective for
each component in a very complex mixture would be greatly
prohibitive. To surmount this, we sought to expand our mi-
cromachined-array-based system to the analysis of mixtures.
The new receptor design involved a CuII center with a

polyaza tricyclic ligand that created a “horseshoe”-like bind-
ing site known to selectively bind tripeptides.[12,13] The core

Figure 1. PCA score plot for each protein trial (red: lysozyme; green:
elastin; dark blue: ovalbumin; pink: fetuin; light blue: BSA). The addi-
tional dimension further separates the proteins.

Table 1. Factor loadings and sequencing results for the four receptors out
of library 1 with the highest loading values for principal component 1
(PC1) and the two receptors with the lowest loading values.

Tripeptide sequence Factor loading (PC1) Bead number

Ala-Ser-Asp 0.984 12
Ser-Lys-Gly 0.963 9
Arg-Lys-Lys 0.951 15
Gly-Asp-Ser 0.932 2
Asp-Leu-Val 0.928 22
Lys-Arg-Met 0.774 23
Gly-Gln-Gln 0.722 6
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was proximally functionalized
with peptide arms. The resin
bound arm consisted of an Asp-
Gly-Lys group bound to the
core through a succinic acid
linker. The other arm was de-
rivatized by using split-and-pool
chemistry to create library 2
consisting of 6859 members.
The CuII center made the li-
brary selective for tripeptides
with copper-coordinating resi-
dues at the N termini, while the
variable peptide arms provide
the differential response.
Again, thirty beads were select-
ed at random and analyzed in
our micromachined array.

The tripeptides chosen for analysis (3–6)) were intended
to probe the selectivity of the library by varying the se-
quence only at the N-terminal or middle residue. The mix-
ture analysis involved 50:50 mixtures of two peptides. The
individual tripeptides and the mixtures are all clearly dis-
cernable after PCA analysis as shown in Figure 2. In all
cases, the PCA plot scores for the mixtures lie between
those of the individual tripeptides used indicating that both
tripeptides contributed significantly to response of the array.
Again, some of the receptors with the highest loading

values along with two receptors with low loading values
were fully characterized, and no conclusive structural simi-
larities were observed (Table 2). This indicates that the re-
sponse from the entire array, not just a few key receptors, is
important in the development of the fingerprint for each an-
alyte.
As encouraging as these results were, it was somewhat

disturbing that over ninety percent of the total variance of
the system was described by one principal component axis.
This, along with the rather high loading values for all the re-
ceptors used in the array (Table 2) suggested that all of the

array members responded similarly to each analyte. In our
most recent work, we addressed this issue, while also focus-
ing on a valid biological concern. In this work, a solution
phase version of library 2 was used for the detection of the
tachykinins, a-neurokinin, and substance P, which are neuro-
transmitter peptides involved in pain transmission in the
mammalian brain.[14] Two of the tripeptides analyzed in the
previous study (3 and 4) along with tetrapeptide His-Lys-
Thr-Asp (7) were used in this study as a-neurokinin ana-
logues. Also, peptide sequences His-Lys-Thr-Asp-Ser-Phe-
Val-Gly-Leu-Met-C(O)-NH2 (8) and Arg-Pro-Lys-Pro-Gln-
Gln-Phe-Phe-Gly-Leu-Met-C(O)-NH2 (9) were used as a-
neurokinin and substance P analogues, respectively. Instead
of selecting receptors at random as in previous work, the
resin-bound library was screened with a colorimetric variant
of a-neurokinin 10. After screening, only 0.5% of the beads
were strongly colored. Six of these beads were selected for
array analysis and sequenced by Edman degradation.
The six receptors that displayed the strongest binding

were then resynthesized in solution phase for use in a 96-
well plate. The array consisted of the six receptors (11a–f ;
Table 3) each with three different metal/counter ion combi-
nations (CuIICl2, Cu

IIOTf, or CdIIOAc) to make a total of 18
sensors. PCA analysis of the data set indicated four signifi-
cant PC axes. The three most significant were used for
graphical analysis (Figure 3). This demonstrates that in some
cases better separation can be achieved through optimiza-
tion and prescreening of a receptor library.

Figure 2. Two-dimensional PCA plot that describes 95% of variance from the original data set. Clustering of
the analytes illustrates the ability of our differential array to discriminate various tripeptides and mixtures of
tripeptides (dark blue His-Glu-Thr 3 ; pink His-Lys-Thr 4 ; yellow: Gly-His-Thr 5 ; light blue His-Gly-Thr 6 ;
dark green: 3 and 4 ; red 5 and 6 ; light green: 4 and 6).

Table 2. Sequencing results and factor loading values for PC1 for library
2.

Tripeptide sequence Factor loading (PC1) Bead number

Lys-Ala-Asp 0.989 26
Gln-Val-Gly 0.985 2
Leu-Lys-Ile 0.981 7
His-Ala-Ile 0.954 31
Phe-Pro-Arg 0.901 35
Arg-Gly-Pro 0.844 22
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Enantioselective Amino Acid Recognition

We have also focused attention on the use of arrays for
enantioselective detection.[15] Here, three bidentate CuII li-

gands 12–14, in conjunction with three colorimetric indica-
tors 15–17, were used to enantioselectively detect several
amino acids. Use of a 96-well micro titer plate alleviates the

synthetic requirement of attaching the receptors to a solid
support. Ligand 14 has already been shown to quantify the
enantiomeric excess of amino acids.[16] In initial studies, re-
ceptors 12 and 13 display preference for l-amino acids,
while 14 shows preference for d-amino acids. By varying the
concentration of ligand, indicator, and CuACHTUNGTRENNUNG(OTf)2, a total of
21 different conditions were used to analyze each amino
acid separately.
Interestingly, PCA analysis indicated that, in this instance,

binding affinity and chirality were identified as the two most
significant components of variance. This can be seen in Fig-
ure 4A in which binding affinity increases along the PC1
axis, and all of the l-amino acids have positive PC2 values,
while the d-amino acids have negative PC2 values. Omission
of the data from receptors of either enantiomeric preference
resulted in poor differentiation of the entire data set indicat-
ing that, when the data set is split, PCA cannot distinguish
these two clear variants (Figure 4B and C). This is analogous
to the human gustatory system, which also employs cross-re-
active receptors; the d-amino acids are typically classified as
sweet and the l-amino acids as bitter.

Multicomponent Sensing Ensembles

It has been demonstrated that multicomponent sensing en-
sembles can be used to differentiate structurally similar ana-
lytes. When a system such as this is shown to be in dynamic
equilibrium under thermodynamic control it is known as dy-
namic combinatorial library (DCL).[17] For example, it has
been shown that UV/Vis data from a system consisting of
two hexasubstituted benzene receptors and two colorimetric
indicators can be analyzed using an artificial neural network

Table 3. Tripeptide sequences for the six receptors chosen from library
11 after pre-screening with chromophore 10.

Receptor R1 R2 R3

a Ala Asp Ile
b Thr Phe Thr
c Thr Met Phe
d Asp Asp Ser
e Pro Lys Met
f Arg Met Met

Figure 3. 3D PCA plot showing good clustering and separation of analy-
tes after array analysis with optimized library 11.
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(ANN) to distinguish differing concentrations of structurally
similar analytes malate and tartrate.[18]

Severin and co-workers have recently demonstrated that
DCLs can be implemented by using no synthesis whatsoev-
er.[19] By mixing three commercially available dyes (Arsen-
azo I, Methylcalcein Blue, and Glycine Cresol Red), which
are known to coordinate metal ions, with two metal salts
(NiCl2 and CuCl2), a DCL consisting of all possible combi-
nations of metal-dye complexes results. The resultant pool
of metal-dye complexes has its own characteristic UV/Vis
absorption spectrum.
It was shown that all of the components of this system

were indeed in a dynamic equilibrium, and that addition of
a dipeptide caused a reproducible shift in this equilibrium as
evidenced by the change in the UV/Vis absorption spectrum
(Figure 5A). After demonstrating that structurally dissimilar
dipeptides afford clearly distinct UV/Vis spectral changes,
the scope of the DCL was tested by analyzing several simi-
lar dipeptides. Because the absorption changes were all simi-
lar, eight relevant wavelengths were chosen as the data set
for linear discriminant analysis (LDA). As shown in Fig-
ure 5B, all of the dipeptides including stereoisomers l-Phe-
Ala and d-Phe-Ala were clearly discernable. It has also
been shown that this DCL can be optimized to differentiate
sequence isomers by varying the concentration of the Ni
and Cu relative to each other.[20] The optimized system was
dependent on the analyte in question.
In another study from the same group, IDAs were per-

formed using an organometallic Cp*Rh complex (18 ; Cp=

cycopentadienyl) as a receptor to differentiate all twenty
natural amino acids.[21] Again, this system was implemented
without any synthetic requirements. IDAs were performed

for each amino acid using three different indicators at vari-
ous pH values.
After analysis with 18 and gallocyanine, the amino acids

were split into a high affinity (His, Cys, Met, Asp, and Asn)
and a low affinity group. These two groups were further an-
alyzed separately. After complete analysis, both groups were
analyzed with LDA to determine the predictive power of
the system. The high affinity group gave accurate assign-
ments 100% of the time, while the low affinity group was

Figure 4. 2D PCA plot for d- and l-amino acids prepared A) from data for all 21 enantioselective IDAs, B) from data for eight IDAs selective for d-
amino acids, and C) from data for 13 IDAs selective for l configurations.

Figure 5. A) Changes in the UV/Vis spectrum upon addition of different
dipeptides to an aqueous DCL, B) 2D LDA score plot for the analytes
Gly-Ala (*), Val-Phe (&), Ala-Phe (!), Phe-Ala (~), and d-Phe-Ala (O).
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99.4% accurate. The most common misclassifications in-
volved isoleucine and valine. The low affinity group was fur-
ther analyzed with PCA in order to visualize the clustering
patterns of the amino acids (Figure 6). The only area of

overlap occurs with Ile and Val, and all of the amino acids
seem to be at least loosely group based on their side chains.

Porphyrin Arrays

Hamilton et al. have developed a library of functionalized
porphyrins capable of discriminating proteins without the
necessity of labeling target proteins.[22] To address the neces-

sity for a more robust process applicable to a wide range of
biologically important proteins, Hamilton synthesized a li-
brary of tetraphenyl porphyrins (TPPs; 19), the fluorescence
intensities of which change upon interaction with a protein
(Scheme 1).
The large hydrophobic cores of the TPPs have been

shown to provide a good binding surface, while the amino
acid based arms contribute diversity and selectivity by alter-
ing the overall charge of the sensors.[23] The TPP library was
synthesized by using a mixed condensation strategy that in-
volved treating a TPP core with two peptidic arms at once,
thus affording six library members from each reaction. From
the resulting 35-member library, eight fluorophores were
chosen for incorporation into the array based on their charg-
es. Upon incubation of the array with one of four proteins
(cytochrome c, cytochrome c551, ferredoxin, and myoglo-
bin) the resulting fluorescence changes were combined to
form a fingerprint for each protein. In the initial proof of
concept experiments, the target proteins were characteristi-
cally different enough that naked eye classification was pos-
sible (Figure 7).
The scope of the TPP library was expanded through incor-

poration of PCA for data analysis.[24] By developing a 3D
Euclidian plot, it was possible to distinguish non-metal-con-
taining proteins as well as protein mixtures (Figure 8). Sig-
nificantly, a mixture of cytochrom c (a strong interacting
protein) and lysozyme (a weak interacting protein) gave a
signal distinct from either of the two individual components,
indicating that a strongly quenching protein does not mask a
weakly quenching one. It was also observed that, through
expansion of the TPP library from 8 to 16 members, the
overall average distance between data points increased from
1.27 to 1.62.

Figure 6. PCA score plot showing discrimination of 15 amino acids.

Scheme 1. Mixed condensation synthesis of library 19.
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Small-Molecule Microarrays (SMM Arrays)

Most of the studies discussed thus far have involved either
96-well microtiter plates or micromachined arrays. However,
small-molecule microarrays (SMMs) offer the significant ad-
vantage of incorporating a much greater number of sensors
than either of the previously mentioned platforms, while re-
quiring less space. Kodadek and co-workers have recently
demonstrated that SMMs can be used as a platform for the
fingerprinting of proteins in biological solutions.[25]

In this example, a combinatorial library of 7680 octameric
peptoids 20 was first synthesized on solid resin with amines
21–27. The library members were then separated into 96-
well plates and cleaved from the resin. An array spotter was
then used to spot each peptoid onto a maleimide functional-
ized glass slide. The array was then analyzed in two different
ways.
In the first analysis, one of three fluorescently labeled

proteins, Ubiquitin (Ub), maltose-binding protein (MBP), or
anti-glutathione S-transferase (GST) was incubated with the
array in the presence of a 100-fold excess of crude E. coli

extract. After washing, the array was analyzed with a micro-
array scanner. The fluorescence intensity changes at each
spot were converted into a bar graph that was unique for
each of the three proteins. The entire bar graphs were too
complicated to discern, but focusing on smaller areas of the
graphs provided visual distinction (Figure 9). As an alterna-

tive method, nonlabeled GST was hybridized to the array,
again in the presence of a 100-fold excess of crude E. coli
extract, and then probed with fluorescently labeled GST an-
tibodies.
Each experiment was duplicated, and scatter plots were

used to examine the reproducibility of the fingerprints.
These plots showed good correlation between arrays of the
same protein, and much lower correlation for plots compar-

Figure 7. Fingerprints of a) cytrochrome c, b) ferredoxin, c) cytrochrome
c551, d) and myoglobin based on the eight porphyrin array.

Figure 8. 3D PCA mapping of the 10 samples identified by an eight por-
phyrin array: protein concentrations 7.5 mm (1.5e) or 15 mm (3e). Abbrevi-
ations: cytochrome c (Cytc), ferredoxin (FD), lysozyme (Lys), and a-lac-
talbumin (Lact). Samples: a) Lact 1.5e; b) FD 1.5e; c) FDLact 1.5e; d)
CytcFD 1.5e; e) CytcFD 3e; f) Cytc 3e; g) Cytc 1.5e; h) CytcLys 3e; i)
CytcLys 1.5e; j) Lys 1.5e.

Figure 9. Protein fingerprints made by color-coding the relative response
of each sensor in an array. The expanded portions more clearly demon-
strate the differences in the fingerprints.
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ing different proteins. A scatter plot comparing the finger-
prints of native GST and fluorescently labeled GST gave a
large number of off-diagonal points as well, indicating that
the array can distinguish between tagged and native pro-
teins.

Conclusion

As of the spring of 2007, only a handful of studies using
arrays of synthetic receptors for the fingerprinting of pro-
teins, peptides, and amino acids have been reported, all of
which were summarized in this Concept Article. Yet, even
with the currently limited examples, the power of differen-
tial arrays of synthetic receptors is evident for protein recog-
nition. Our group, as well as that of Hamilton, have shown
that proteins can be differentiated. In our study, post-trans-
lation glycosylation events were distinct from normal pro-
teins. Further, our group, as well as that of Severin, have
shown that peptides can be distinctly fingerprinted. In fact,
we have found that even complex decapeptides can be dif-
ferentiated with cross-reactive receptors. Finally, in a more
biologically sophisticated approach, Kodadek has used
arrays of peptoids followed by antibody visualization, to
create bar codes for the identity of proteins. Clearly the
ground is set to expand upon the use of synthetic receptors
for the type-casting, quantifying, and monitoring of complex
mixtures of proteins. This class of analytes is just one of
those being studied for a system biology approach to medi-
cine, but the concepts presented herein for proteins are just
as valid for nucleotides and metabolites. Therefore, the
future of chemical research using synthetic receptors is sure
to contain differential receptors for nucleotides, proteins,
and metabolites.
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